Моделирование рабочих процессов погрузочно-транспортных модулей с учетом случайного характера внешних воздействий

Окончание табл. 3.4

1

2

3

Номинальная угловая скорость вращения ковша, з

1/с

0

,59

Максимальный момент двигателя, приведённый к оси ковша

Н×м

28475

Допустимая глубина внедрения ковша Sз.max без учёта инерционной составляющей для пород крепостью f =7; 10; 13

м

0,85

0,99

1,13

То же с учётом сил инерционной составляющей, Sз.max

м

0,80

0,91

1,06

Как видно из результатов расчёта, учёт инерционной составляющей приводит к снижению допустимой глубины внедрения на 6–8 %.

3.3Объём единичного захвата ковшом. Предельная вместимость ковша и объём ссыпания

В математической модели объёма единичного захвата используется известное предположение [63], что объём черпания в цикле определяется площадью раздельного зачерпывания Fзач., приведённой шириной ковша Вк', коэффициентом совмещения внедрения и черпания Kсм и объёмом ссыпания ∆V. В общем случае

V = Вк' Fзач × Kсм. – ∆V. (3.46)

Площадь раздельного черпания может быть вычислена как площадь фигуры АВС, ограниченной траекторией передней кромки ковша CB, относительно штабеля АВ и линий почвы АС (рис. 3.16).

3_17

Рис. 3.16. Схема к расчёту площади раздельного зачерпывания

Площадь фигуры АВС можно вычислить интегрированием:

,

где YВ, YС – координаты точек C и B; Yс = – hк, Yв – определяется как координата точки пересечения окружности CB, уравнение которой имеет вид , и прямой , где .

Для нахождения величины b сначала находим координату XC. Если YC = – hк, то . Зная XC, находим XA:

.

Подставляя в уравнение прямой координаты XA и YA, получим ; откуда .

Площадь искомой фигуры АВС равна:

. (3.47)

После ряда преобразований выражение (3.47) примет вид:

(3.48)

Величина представляет собой потенциальный объём захвата без учёта ссыпания материала из ковша. Для ковшей с двумя боковыми стенками, как показывают исследования, DV = 0 и Vк = V¢к. Для машин с боковой разгрузкой ковша величина DV играет существенную роль в формировании объёма груза, остающегося в ковше после черпания. Расчёт DV приведён ниже.

В целях оценки достоверности модели площади черпания (3.47) приводятся зависимости Fзач = f(Sвн) и Vк = f(Sвн) для машины 1ПНБ-5, полученные моделированием на ЭВМ. Исходные данные соответствуют серийному ковшу машины 1ППН-5. Для сравнения на этом же рисунке 3.17 приводятся аналогичные зависимости для машин МПК-3 и МПК-1000Т.

Как видно из графиков, расчётный объём единичного черпания при определённой глубине внедрения существенно зависит от траектории движения передней кромки ковша. У машин 1ППН-5 и МПК-3 траектории близки, поэтому практически одинаковы и площади зачерпывания. Однако приведённая ширина ковша машины 1ППН-5 выше, чем у МПК-3, поэтому объём черпания машиной МПК-3 на 26 % ниже. Использование верхнего центра поворота ковша на машине МПК-1000Т приводит к значительному увеличению площади черпания.

Необходимо отметить, что окончательное суждение о рабочих качествах машин с точки зрения объёмов единичного черпания, производительности и удельной трудоёмкости погрузки можно сделать только на основе комплексного моделирования с учётом действия всех ограничений. При этом для машин с боковой разгрузкой ковша существенное значение имеет реальная вместимость ковша и объём ссыпания через боковые стенки и открытые стороны ковша.

3-24

Рис. 3.17. Зависимости площади зачерпывания и объёма единичного захвата (без учёта ссыпания) от глубины внедрения

В настоящее время при проектировании или анализе рабочих качеств погрузочной машины с боковой разгрузкой ковша вместимость погрузочного органа определяется по приближённым формулам. Предварительные расчёты и экспериментальные исследования показали, что ошибка может достигать 30–40 %, главным образом, из-за недостоверного определения объёма ссыпания горной массы через боковые стороны ковша. Вследствие этого главная характеристика машины – производительность за чистое время погрузки, приводимая в технических характеристиках машин, указывается без должного обоснования. Фактическая производительность машин должна определяться по объёму черпания в функции глубины внедрения, траектории движения передней кромки ковша с учётом суммарных потерь груза при формировании остающегося в ковше объёма материала.

Рассмотрим широко распространённую конструкцию ковша, имеющего ширину Bк и геометрические характеристики, приведённые на рисунке 3.18.

3-25

Рис. 3.18. Геометрическая схема к расчёту вместимости ковша и объёмов ссыпания через боковые стороны ковша

Ссыпание груза из ковша возможно через открытую сторону ковша и через сторону с установленной боковой стенкой. При анализе параметров ковша возникает необходимость решения двух задач: определение максимальной вместимости ковша Vк.max или Vк.max1; определение фактического объёма груза, остающегося в ковше после черпания Vк.з и коэффициента потерь п, как отношения суммарного объёма ссыпания к потенциальному объёму зачерпывания V¢к.з.

Максимальная вместимость ковша Vк.max позволяет установить предельную производительность погрузочной машины при минимальной продолжительности цикла черпания и оценить соответствие паспортных данных реальным. Фактический объём груза, остающийся в ковше после очередного черпания, Vк.з., даст возможность оценить соответствие параметров механизмов внедрения и черпания и вместимости ковша.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45 
 46  47  48  49  50  51  52  53  54  55 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы