Моделирование рабочих процессов погрузочно-транспортных модулей с учетом случайного характера внешних воздействий

Таким образом, приближённый энергетический метод может эффективно использоваться для расчёта глубины внедрения ковша в штабель колёсно-рельсовых ШПМ в общей системе математических моделей формирования потока единичных черпаний.

Решение уравнения динамики внедрения ковша в штабель для машин группы МПК-3, которые оборудуются, как правило, регулируемым гидроприводом ходовой части, выполняетс

я аналогично [55]. В качестве регулятора используется устройство, обеспечивающее постоянство мощности, то есть реализуется принцип q×p = const, где q – расход насоса; р –давление.

Внедрение ковша также происходит в два этапа. На первом этапе уравнения динамики процесса внедрения имеют вид (3.14) – (3.15) и после аналогичных преобразований сводятся к виду (3.17). Величина тягового усилия Tдк, приведённая к начальной окружности ведущей звёздочки rзв, определяется также соотношением:

Следовательно, механическая характеристика двигателя, приведённая к поступательному движению машин , может быть получена из механической характеристики гидромотора (рис. 3.4).

3_4

Рис. 3.4. Приведённая к поступательному движению механическая характеристика ходового гидропривода

Внешняя характеристика содержит 3 участка: 1 – линейный, в котором без больших погрешностей можно положить м = мо = const при ; 2 – гиперболический, на котором , где А – постоянная, выражение для которой приводится ниже. Этот участок реализуется при ; 3 – предельный, где . Этот участок реализуется при разгоне машины. Точка Тдко определяет силу тяги при движении машины вне штабеля. Этой силе тяги соответствует скорость перемещений мо. Порядок расчёта глубины внедрения ковша в штабель для машин с регулируемым гидроприводом ходового механизма (точное решение):

1) глубина внедрения ковша на участке 1, где м = мо = const, =0 определяется как статическая составляющая из уравнения Wвн(S1) = Tx;

2) на участке 2 дополнительная глубина внедрения определяется как результат решения дифференциального уравнения:

.

Начальные условия: t = 0; S = S1; ; граничные условия: при S = S2:

.

По результатам решения находим S2, м2;

3) на участке 3 двигатель отключается, реализуется остаток кинетической энергии машины:

.

Приближённое решение находится как сумма глубины внедрения двух этапов:

I этап – внедрение до начала пробуксовки гусениц:

,

II этап – двигатель отключается, кинетическая энергия машин реализуется в виде дополнительной глубины внедрения DS:

.

Графическое представление процесса дано на рисунке 3.5.

3_5

Рис. 3.5. Силовая диаграмма трёхэтапного процесса внедрения

Для оценки погрешности решения задачи динамики внедрения приближённым методом (рис. 3.6) представлены данные по глубине внедрения ковша точным и энергетическим методом (погрузочная машина МПК-3).

3_6

Рис. 3.6. Зависимость глубины внедрения ковша машины МПК-3

от крепости горной массы:

точное решение; приближённое решение

Как видно из графиков, максимальное различие между решением исходного дифференциального уравнения и приближённым решением с помощью энергетических соотношений составили 3,7 %. Это позволяет считать энергетический метод приемлемым для построения моделей формирования единичных черпаний.

Выполнен также анализ параметров машины МПК-1000Т с позиций реализации возможностей гидравлического напорного механизма при погрузке горной массы крепостью f Î 7; 10; 13 (табл. 3.2).

Таблица 3.2

Результаты расчёта рациональных параметров механизма выдвижения и глубины внедрения ковша машины МПК-1000Т

Наименование показателей

Единицы измерения

Значение

Минимальная скорость выдвижения телескопической стрелы

м/с

0,41

Диаметр поршня напорного гидроцилиндра

м

0,085

Расход насоса

м3/с

2,4×10-3

Максимальное напорное усилие – горизонтальная составляющая

H

6,84×104

Глубина внедрения ковша

при f = 7

м

0,95

при f = 10

0,80

при f = 13

0,71

Разработанные математические модели позволяют оценить параметры машины и её привода с позиций их взаимного соответствия, а также установить рациональные значения параметров, обеспечивающих наибольшую глубину внедрения ковша.

В частности, для условий данного примера, рассматривающего серийную машину МПК-1000Т, отношение максимального напорного усилия к силе тяжести машины составляет 0,58, что близко к коэффициенту сцепления гусениц с почвой при неподвижном состоянии машины. При этом скорость выдвижения – 0,41 м/с – мала, что приводит к удлинению цикла черпания.

Более детально моделирование процессов погрузки с целью оценки рабочих качеств ковшовых ШПМ рассматриваемого типа выполнено в главе 4.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45 
 46  47  48  49  50  51  52  53  54  55 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы