Моделирование рабочих процессов погрузочно-транспортных модулей с учетом случайного характера внешних воздействий

Отметим, что реализуемая в каждом цикле черпания глубина внедрения определяется не только напорными усилиями, включая динамическую составляющую, но и возможностями механизма зачерпывания. Поэтому при моделировании процесса погрузки необходимо учитывать ограничения, накладываемые силовыми и энергетическими возможностями двух основных механизмов.

Формирование объёма захвата в конечной стадии

цикла черпания зависит от траектории движения передней кромки ковша, возможностей совмещения процессов внедрения и зачерпывания, а также, в не меньшей степени, от потерь груза при заполнении ковша. Процессам ссыпания материала через боковые стороны ковша не уделялось должного внимания в расчётах производительности. Вместе с тем, как показали производственные наблюдения и теоретические расчёты, потери от ссыпания могут составлять более 50 % геометрического объёма ковша.

Поток единичных черпаний Vi представляет собой последовательность случайных чисел. Но формирование производительности ковшовой машины – это не только объёмы черпаний, но и продолжительность циклов Tц.i, которые включают затраты времени на захват груза, перемещение машины (или погрузочного органа) к транспортному средству и обратно и разгрузку ковша. Величина Tц.i в общем случае также является случайной, так как расстояния перемещения машины или ковша зависят от положения штабеля после очередного цикла, а оно, в свою очередь, определяется объёмом черпания Vi.

Таким образом, чтобы сформировать на имитационной модели производительность ковшовой погрузочной машины за чистое время работы, необходимо рассмотреть в единстве процессы взаимодействия ковша со штабелем – внедрение, черпание, наполнение и перемещение машины (или погрузочного органа). Далее, в соответствии с общим алгоритмом (рис. 2.1), необходимо выполнять преобразование потока черпаний Vi(t) призабойным транспортным оборудованием. Для получения выходных характеристик ППТМ – производительности Q и удельной трудоёмкости t за общее время погрузки на грузопоток накладываются затраты времени и трудозатраты вспомогательных операций.

Таким образом, поток единичных черпаний, формируемый ковшовой погрузочной машиной любого из рассматриваемых конструктивных типов, представляют собой случайные последовательности двух видов:

1) объём единичных черпаний Vкj, j Î (0, K), K – общее число черпаний для выгрузки штабеля объёмом Vho;очевидно, что ;

2) чистая продолжительность отдельных циклов черпания Tцj, j Î(0, K), очевидно, что = Tп, где Тп – продолжительность выгрузки штабеля.

В действительности случайные величины Vкj и Tцjвзаимозависимы, то есть после каждого конкретного значения объёма черпаний Vкjследует определённая продолжительность цикла Tцj. Вместе с тем, моделирование процессов Vкj и Tцjможно проводить независимо друг от друга.

Зная и , можно вычислить среднюю производительность за чистое время погрузки Qч как отношение этих величин; Qч является, как ранее показано, одним из исходных данных, необходимых для расчёта критериальных показателей процесса погрузки. Для построения модели эксплуатационной производительности следует учесть потери времени на вспомогательные операции и ликвидацию отказов.

Вопросам определения объёмов черпания ковшом из штабеля посвящены исследования известных учёных – Г.В. Родионова, А.Д. Костылева, С.С. Музгина, П.А. Михирева, Г.Ш. Хазановича, О.П. Иванова, В.Г. Сильня, О.Д. Гагина, В.Д. Ерейского [34–65]. Разработаны методы расчёта, базирующиеся в основном на обобщении результатов экспериментальных исследований. Созданы базовые модели сопротивлений внедрению Wвн, моментов сопротивлений зачерпыванию Мз, наполнения ковша Vк, а также методы расчёта глубины внедрения Sвн в динамическом процессе.

Однако использование эмпирических зависимостей Wвн(S), Мз(S), Vк(S, Tp) не позволяет определить реальный объём единичного захвата ковшом по следующим причинам. Во-первых, не учитывается влияние случайных факторов, в частности, размер куска перед кромками ковша. Во-вторых, опытные зависимости не увязаны в единую систему расчётных моделей, содержащих последовательность действий и необходимых силовых и энергетических ограничений, определяемых параметрами погрузочной машины.

Таким образом, совокупность математических моделей для формирования объёма единичного захвата должна состоять из специальных соотношений и процедур:

1) построение зависимости сопротивлений внедрению ковша от глубины внедрения с учётом влияния технологических и конструктивных факторов – Wвн(S);

2) методика расчёта глубины внедрения ковша в штабель Sвнпод действием напорного усилия, развиваемого ходовым механизмом или независимым механизмом напора с учётом динамики процесса внедрения;

3) построение зависимости максимального момента сопротивлений зачерпыванию в функции глубины внедрения Mз.mах(S) с учётом влияния технологических и конструктивных факторов;

4) методика расчёта допустимой глубины внедрения по фактору максимальных силовых возможностей механизма черпания Smах.з;

5) построение зависимости объёма единичного захвата ковшом в функции глубины внедрения при раздельной траектории движения передней кромки ковша Vк(S, Tp);

6) определение поциклового объёма единичного черпания Vкj для допустимой по возможностям механизмов напора и зачерпывания глубины внедрения с учётом реальной вместимости ковша и возможной потери груза из-за ссыпания.

Перечисленные зависимости и ограничения получены в главе 3.

При моделировании процесса формирования производительности ШПМ ковшового типа важно представлять тип и характеристику призабойного транспортного средства, технологию взаимодействия его с ШПМ в процессе погрузки, так как это определяет изменение продолжительности цикла черпания как случайного процесса, а также необходимые затраты на удлинение транспортной подсистемы или её передислокации.

В сочетании с ШПМ ковшового типа могут использоваться все известные призабойные транспортные средства [1, 5]: одиночные вагонетки или «мини-составы» в сочетании со средствами их обмена; перегружатели для загрузки малых составов с осевым или боковым расположением; конвейерные линии с наращиванием или телескопические; самоходные вагоны или конвейерные бункер-вагонетки. Конструкция ШПМ и крепость горной массы предопределяет варианты использования призабойного транспортного оборудования. В качестве объектов для разработки моделей и исследования поцикловой продолжительности единичного черпания могут быть приняты следующие варианты погрузочно-транспортных модулей (табл. 4.1).

Таблица 4.1

Варианты погрузочно-транспортных модулей, принятые к исследованию и моделированию

Погрузочная машина

Призабойный

проходческий транспорт

Дополнительные операции при погрузке

1ППН-5

Одиночные вагонетки различной ёмкости в одно- или двухпутевой выработке шириной Вв £ Впогр.

Обмен вагонеток при погрузке, формирование составов вагонеток, удлинение рельсового пути

МПК-3

Неподвижный перегружатель с боковой загрузкой «мини-состава» из вагонеток различной ёмкости

Обмен «мини-составов», передвижка перегружателя

МПК-3

«Мини-составы» вагонеток различной ёмкости, с различным числом вагонеток «в мини-составе»

Обмен «мини-составов»

МПК-1000Т

Передвижной проходческий перегружатель или взрывонавалочный перегружатель с передачей груза на конвейерную линию

Передвижка проходческого перегружателя, увеличение конвейерной линии

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45 
 46  47  48  49  50  51  52  53  54  55 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы