Образовательный стандарт дисциплины "Системное моделирование"
Вследствие того, что моделируемый процесс является случайным, результаты, полученные при однократном моделировании, не могут характеризовать его. Искомые величины, характеризующие исследуемый процесс, находят статистической обработкой данных, полученных многократным моделированием. Если число испытаний достаточно велико, то в силу
закона больших чисел полученные оценки приобретают статистическую устойчивость и с достаточной для практики точностью могут быть приняты в качестве характеристик процесса.
Пусть моделируется процесс, зависящий от случайных параметров . Законы распределения вероятностей этих параметров известны. В каждом из независимых испытаний получается некоторая величина , где – номер испытания. Требуется определить характеристики процесса. Ход моделирования – метод статистических испытаний можно представить следующим образом. Строится модель, описывающая структуру и функционирование системы с учетом связей и взаимовлияний между ее элементами, на основе модели строится моделирующий алгоритм.
Следующим шагом является моделирование случайных параметров системы. Например, параметр может быть распределен по нормальному закону с математическим ожиданием и дисперсией , параметр – также по нормальному закону с математическим ожиданием и дисперсией , параметр – равномерно в интервале и т. д.
Далее производится испытаний. В результате каждого испытания получают случайное значение . Значения запоминаются и используются для вычисления величин, характеризующих процесс функционирования системы. Для обеспечения статистической устойчивости эти величины определяются как средние значения по большому числу испытаний . Выбор зависит от требований точности, предъявляемых к результатам моделирования.
Таким образом, можно выделить три основные составные части метода статистических испытаний:
построение математической модели и моделирующего алгоритма исследуемой системы;
2) формирование случайных величин с заданным законом распределения вероятностей;
статистическая оценка результатов моделирования.
Нельзя указать общих правил построения модели и моделирующего алгоритма. Однако имеются приемы, позволяющие представить формализованный процесс функционирования системы в виде последовательности операций (или групп операций), выполняемых ПЭВМ. В качестве примера далее будет рассмотрено построение структуры алгоритма, моделирующего работу системы массового обслуживания (СМО). Методы формирования случайных величин с заданным законом распределения излагаются в следующем параграфе. Здесь же рассмотрим вопросы оценки точности метода статистических испытаний и определения необходимого числа испытаний .
Статистическая обработка и оценка точности результатов моделирования основывается на предельных теоремах теории вероятностей: теореме Чебышева и теореме Бернулли.
Согласно теореме Чебышева, при неограниченном увеличении числа независимых испытаний среднее арифметическое значение случайной величины сходится по вероятности к математическому ожиданию этой величины, то есть
, (1)
где – сколь угодно малое положительное число,
.
Теорема Бернулли доказывает, что при неограниченном увеличении числа независимых испытаний частота наступления случайного события сходится к вероятности этого события, то есть
. (2)
Пусть случайная величина характеризуется математическим ожиданием и дисперсией . В качестве приближенного значения величины берется среднее арифметическое значение , определяемое по результатам независимых испытаний. Отклонение величины от искомого математического ожидания и есть ошибка метода. Величина , удовлетворяющая неравенству , называется точностью оценки.
Из теоремы Чебышева следует, что ошибка метода может быть оценена лишь вероятностно, с определенной степенью достоверности. Обозначим через вероятность того, что выполняется неравенство :
. (3)
Вероятность характеризует степень достоверности оценки, ее надежность. Это означает, что с надежностью можно быть уверенным, что среднее арифметическое значение не выйдет за пределы интервала , то есть, что
Другие рефераты на тему «Педагогика»:
- Педагогические технологии
- Логико-математические игры в работе со старшими дошкольниками как средство формирования логического мышления
- Процесс организации педагогического взаимодействия школы и родителей
- Музыкальное воспитание детей младшего школьного возраста
- Методические разработки занятий по развитию творческих способностей учащихся посредством обучения декоративно-прикладному творчеству
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения